Linear Algebra II

06/05/2015, Monday, 18:30-21:30

You are NOT allowed to use any type of calculators.

1 (8 + 10 = 18 pts)

Inner product spaces

(a) Let V be an inner product space. Find real numbers a and b such that the so-called Apollonius' identity

$$||z - x||^2 + ||z - y||^2 = a||x - y||^2 + b||z - \frac{x + y}{2}||^2$$

holds for any triple x, y, and z in V.

(b) Consider the vector space C[-1,1] with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx.$$

Find the best approximation of the constant function 1 within the subspace spanned by the vectors x and |x|.

$$(13 + 5 = 18 \text{ pts})$$

Singular value decomposition

Consider the matrix

$$M = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (a) Find a singular value decomposition for M.
- (b) Find the best rank 2 approximation of M.

Suppose that a matrix has the characteristic polynomial

$$p(\lambda) = \lambda(\lambda + 2)(\lambda^2 + 1).$$

Prove that this matrix is

√ (a) singular.

√ (b) diagonalizable.

√ (c) NOT symmetric.

√ (d) NOT skew-symmetric.

(e) NOT orthogonal.

4 (8+10=18 pts)

Positive definiteness

Let a be a real number. Determine all values of a such that the matrix

$$\begin{bmatrix} 1 & a & 1 \\ a & a & a+1 \\ 1 & a+1 & 1 \end{bmatrix}$$

is

- (a) positive definite.
- (b) negative definite.

 $5 \quad (3+5+10=18 \text{ pts})$

Jordan canonical form

Consider the matrix

$$\begin{bmatrix} 2 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 1 & 5 & 2 & -1 \\ 0 & -4 & 0 & 4 \end{bmatrix}.$$

V

(a) Show that the characteristic polynomial is $p(\lambda) = (\lambda - 2)^{2}$.

1

- (b) Is it diagonalizable? Why?
- (c) Put it into the Jordan canonical form.